

Update on the IMO Future Fuels & Technology Project (FFT Project)

Air Pollution and Energy Efficiency Team

Marine Environment Division, IMO Secretariat

Study on the readiness and availability of low- and zero-carbon technology and marine fuels

Summary slide deck of final report, 5 May 2023

Tim Scarbrough Ricardo

Tore Longva DNV

Introduction and context

CONTENTS

Part A: What Are Possible Pathways To Decarbonise?

Part B: How Could We Meet These Pathways?

Part C: Is it feasible to meet these decarbonisation scenarios?

Introduction and context

- Study is part of Future Fuels and Technology project (FFT Project)
- Aim: assess state of availability and readiness of lowand zero-carbon ship technology and marine fuels
- Context: provide evidence for use in revision of Initial GHG Strategy
- Study conducted January to March 2023
- Published
 - Full report with 2 page executive summary
 https://www.imo.org/en/OurWork/Environment/Pages/Future-Fuels-And-Technology.aspx
 - 28 page summary submitted as MEPC 80/INF.10
 https://www.cdn.imo.org/localresources/en/MediaCentre/WhatsNew/Documents/MEPC80.INF10.pdf

Part A: What Are Possible Pathways To Decarbonise?

- Decarbonisation scenarios
- Sector energy demand

Part B: How Could We Meet These Pathways?

- Technology/commercial readiness
- Potential availability of fuels

Part C: is it feasible to meet these decarbonisation scenarios?

- Feasibility assessment
- Conclusions

Introduction and context

CONTENTS

Part A: What Are Possible Pathways To Decarbonise?

Part B: How Could We Meet These Pathways?

Part C: Is it feasible to meet these decarbonisation scenarios?

Three working decarbonisation scenarios as options to bound the potential Revised Strategy

Candidate fuels identified based on well-to-wake and tank-to-wake GHG emissions

- Candidate fuels identified from review of WtW and TtW emissions
- Candidate fuels have significantly reduced WtW emissions.
- 3. For the purpose of achieving the targets, candidate fuels are assumed to have zero TtW GHG emissions
- No carbon credits / offsets from other sectors
- 5. Includes CO₂, CH₄ and N₂O, based on GWP100
- Not prejudging whether Revised GHG Strategy should cover WtW or TtW

GHG reduction targets determine maximum amount of fossil fuel and minimum energy to be supplied by candidate fuels or energy demand reduction

- Candidate fuels and energy efficiency (high growth additional demand)
- Candidate fuels and energy efficiency (low growth)
- Fossil fuels (high growth additional demand)
- Fossil fuels (low growth)

1 EJ = 24.3 Mt LFO

30% speed reduction and implementing all available energy efficiency measures can reduce energy demand by 15-27% but still high demand for candidate fuels to meet the decarbonisation ambitions

CONTENTS

Introduction and context

Part A: What Are Possible Pathways To Decarbonise?

Part B: How Could We Meet These Pathways?

Part C: Is it feasible to meet these decarbonisation scenarios?

Technology Readiness Levels (TRL) extended to accommodate Commercial Readiness Level (CRL)

Maturity	Rating	Description of readiness level			
Basic research	TRL1	Basic principles of scientific research observed and reported			
	TRL2	Invention and research of practical application			
	TRL3	Proof of concept with analytical and experimental studies to validate the critical principles of			
	IKLS	individual elements of the technology			
Development	TRL4	Development and validation of component in a laboratory			
•	TRL5	Pilot scale testing of components in a simulated environment to demonstrate specific aspects			
		of the design			
	TRL6	Prototype system built and tested in a simulated environment			
Demonstration	emonstration TRL7 Prototype system built and validated in a marine operational environmen				
	TRL8	Active commissioning where the actual system is proven to work in its final form under			
	IKLO	expected marine operating conditions			
Deployment:	TRL/CRL9	Operational application of system on a commercial basis – technically ready but limited			
early adoption		number of vessels/first-of-a-kind facilities			
-		Integration needed at scale: solution is commercial but needs further integration efforts to			
	CRL10	achieve full potential - may be 100's or a few 1000 vessels or small number of at-scale			
		facilities, small share of market			
Mature	CRL11	Proof of stability reached, with predictable growth			

The technologies and fuels needed to meet the demand will be commercially ready in time, and earlier than shown if a clear signal of demand is given

- Technology Readiness Levels (TRL) extended to accommodate Commercial Readiness Level (CRL)
- Reviewed 100+ literature sources and consulted / validated with stakeholders
- Evaluated forecast readiness (TRL/CRL):
 - Energy saving and efficiency technologies
 - Fuel production pathways
 - Propulsion tech: engines and fuel cells
 - Onboard carbon capture
- These graphics are forecasts based on today's situation (ambition, policies)

Existing orderbook drives demand for bunker facilities 48 candidate fuel production projects identified

Fuel types	Distribution and storage	Bunkering infrastructure		
Fuel oils (e-diesel, bio-diesel)	Can use existing distribution and storage facilities for conventional fuel	Can use existing bunkering infrastructure		
Gaseous fuels (e-methane, bio-methane)	Can use existing distribution and storage facilities for LNG	Can use existing LNG infrastructure		
Methanol (e-methanol, bio-methanol)	Existing storage and distribution infrastructure: methanol terminals, already traded by ships	Successful demonstration bunkering operations, ship-to-ship bunkering possible. Partially developed bunkering infrastructure.		
Ammonia (e-ammonia, blue ammonia)	Existing storage and distribution infrastructure: ammonia terminals, already traded by ships	No bunkering infrastructure today, and no bunkering operations demonstrated. Barriers remaining to be solved.		
Hydrogen (e-hydrogen, blue hydrogen)	No existing distribution infrastructure	No existing bunkering infrastructure Local bunkering demonstrated. Barriers remaining to be solved.		

Shipyards can scale up to match candidate fuel roll-out

- Increasing number of alternatively fuelled vessels being built
- Diversifying number of shipyards delivering candidate-fuelled vessels
- Historically yards have been able to increase production significantly in a short time
- Capacity to scale up the production and installation of energy converters, energy efficiency technologies and onboard CCS plants over short time periods once demand is clear

Public

Potential for significant availability of energy to achieve decarbonisation scenarios but depends on firm demand

If there is a clear signal of demand, the price differential of candidate fuels is not a barrier to their uptake for the shipping industry

Higher prices of candidate fuels on their own are not a barrier: the barrier is the current uncertainty, in the absence of a clear demand signal, of when and by how much fuel prices could change

The increased capital costs of vessels using candidate fuels will not be a significant barrier to adoption

Upfront costs of some alternatively fuelled vessels can already be managed today

The high capital costs of onboard carbon capture systems are anticipated to be a barrier to adoption

CONTENTS

Introduction and context

Part A: What Are Possible Pathways To Decarbonise?

Part B: How Could We Meet These Pathways?

Part C: Is it feasible to meet these decarbonisation scenarios?

2030 feasibility

Initial IMO GHG Strategy:

80% reduction by 2050:

Feasible with increased policy ambition

Feasible with increased policy ambition

Decarbonisation by 2050:

Major gaps

2040 feasibility

Initial IMO GHG Strategy: Feasible with increased policy ambition 80% reduction by 2050: Feasible with increased policy ambition Decarbonisation by 2050: Feasible with increased policy ambition

2050 feasibility

Initial IMO GHG Strategy:

80% reduction by 2050:

Feasible with increased policy ambition

Feasible with increased policy ambition

Feasible with increased policy ambition

Decarbonisation by 2050:

Energy demand - BAU energy efficiency

- Energy demand additional energy efficiency
- Electricity (shore power from grid)
- Advanced biofuels
- E-fuels
- Blue fuels
- Advanced biofuels and onboard CCS
- Fossil fuels and onboard CCS

4 8 12 16 20

1 EJ = 24.3 Mt LFO

BAU trajectories, median Decarbonisation trajectories, median

Decarbonisation trajectories, median

Energy demand/availability (EJ)

CONTENTS

Introduction and context

Part A: What Are Possible Pathways To Decarbonise?

Part B: How Could We Meet These Pathways?

Part C: is it feasible to meet these decarbonisation scenarios?

Conclusions

Achieving a more ambitious decarbonisation pathway than business as usual is feasible, with a strengthened level of ambition and implementation of further GHG reduction measures

- Not limited by commercial readiness of alternative fuels and technologies, nor infrastructure or shipyard readiness
- Current forecasts of readiness would accelerate if increased demand is agreed
- A clear signal of demand is needed to enable sufficient supply of candidate fuels, and needed very soon to enable meeting interim targets of decarbonisation scenarios
- The higher cost of candidate fuels than conventional fuels is not a barrier to deployment if the demand signal is clear.
- All three decarbonisation scenarios are expected to be feasible in 2040 and in 2050 if policies to transition the sector to a more ambitious decarbonisation pathway are agreed and implemented very soon

Decarbonisation scenario	2030		2040		2050	
Initial IMO GHG		Feasible with increased		Feasible with increased		Feasible with increased
strategy	N. T.	policy ambition		policy ambition		policy ambition
80% reduction		Feasible with increased		Feasible with increased		Feasible with increased
by 2050		policy ambition		policy ambition		policy ambition
Decarbonisation	X	Major gaps		Feasible with increased		Feasible with increased
by 2050				policy ambition		policy ambition

Thank you – any questions, comments, follow-ups:

Ricardo

30 Eastbourne Terrace, London, W2 6LA, UK

Tim Scarbrough

Associate Director

+44 1235 753 159 Tim.Scarbrough@ricardo.com

www.ricardo.com

Tore LONGVA, MSc Senior Principal Consultant, Regulatory Affairs

tore.longva@dnv.com Mobile: +47 957 00 428

DNV, Veritasveien 1, 1322 Høvik

www.dnv.com

Ji-man Seo

Senior Professional Officer (FFT Project Manager)
Subdivision for Protective Measures
Marine Environment Division

4 Albert Embankment London SE1 7SR United Kingdom www.imo.org

Switchboard: +44 (0)20 7735 7611 Email: JSeo@imo.org

